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ABSTRACT

Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully
understand their thermostructural behavior and identify key factors affecting the open-mode debonding
failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich
panels with different radii of curvature. The curved sandwich panels are either simply supported or
clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the
concave side. The finite-element method was used to study the effects of panel curvature and boundary
condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich
panels. The critical stress point, where potential debonding failure could initiate, was found to be at the
midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the
concave side, depending on the boundary condition and panel curvature. Open-mode stress increases wit
increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases
slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the
boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses anc
the associated sandwich core depth stretching.

NOMENCLATURE
A, cross-sectional area of honeycomb cell (normal to honeycomb cell generatrix), in
A, cross-sectional area of honeycomb cell wall (normal to the honeycomb cell
generatrix), iR
E Young’s modulus of face-sheet material, 1B/in
E,;, E,,, Egy  effective moduli of elasticity of honeycomb core, 1B/in
E22 beam element for which the intrinsic stiffness matrix is given
E41 quadrilateral membrane element
E43 quadrilateral combined membrane and bending element
G shear modulus of face-sheet material, fb/in

G, G,g, Gy, effective shear moduli of honeycomb core, fb/in

h depth of honeycomb core, in.

JLOC joint location (grid point) of finite-element model

I half-span curved length along center line of curved sandwich panel, in.
r =57.3 (/0), radius of curved sandwich panel, in.

SPAR Structural Performance And Resizing finite-element computer program
TPS thermal protection system

T, temperature of concave (lower) surface of curved sandwich panel, °F
T, temperature of convex (upper) surface of curved sandwich panel, °F

thickness of face sheets, in.
a coefficients of thermal expansion of face sheets, in/in-°F
Oy, 05,0 coefficients of thermal expansion of honeycomb core, in/in-°F



9, radial displacement of middle surface at midspan of curved sandwich panel, in.

Ah change of honeycomb core depitfpositive for stretching), in.

(Ah) 1ax maximum value ofh, in.

0 curvature angle (or half-span angle), deg

Vv Poisson’s ratio

p weight density of material used for face sheets and honeycomb corg, Ib/in

Phe effective weight density of honeycomb core structure, Ib/in

o, radial tensile stress (open-mode stress) in honeycomb core cell wadl, Ib/in

ole tangential stress in concave side (lower) face sheet Ib/in

og tangential stress in convex side (upper) face sheet Ib/in

(01) s effective radial tensile stress in honeycomb core,3b/in

(0/)4 local maximum value of, in a distribution of  along core depth at a tangential
station, Ib/irt

(01) max maximum value ofa,), , b/

Subscripts

1,2,3 radial, tangential, and axial (longitudinal) directions

INTRODUCTION

Since the well-known successful aerospace application of sandwich structures in the all-wood-
constructed British Mosquito fighter-bomber aircraft during World War 1l (refst),1the use of
sandwich structural technology has become widespread in various aerospace structural applications (e.g.
wings, tails, wall panels, webs of beams). The typical sandwich structure in panel form is fabricated with
two relatively thin, high-strength face sheets separated by and bonded to opposite sides of relatively
thick, low-density, low-strength core. The resulting sandwich structures are lightweight and have high
flexural stiffness.

In most aerospace applications, the sandwich panels are curved (e.g., fuselage glove of space shuttle
orbiter, certain landing gear doors) or flat with constant core depth or variable core depths to form
aerodynamic shapes (e.g., rotary wing blades, T-38 horizontal stabilizers). When applied to hypersonic
flight vehicles such as space shuttle orbiter structures that are subjected to severe aerodynamic heating
the sandwich structures are protected with a thermal protection system (TPS) so that the structures car
operate in warm temperatures with low thermal gradient across the sandwich core depth (ref. 5). If the
thermal gradients across the core depth are too severe, the induced thermal moment could become stron
enough to bend the sandwich panel and disturb the original panel shapes. Ko (ref. 6) studied this problem
in great detail.

The most extensively used sandwich structure in aerospace technology is the honeycomb-core
sandwich structure. Because the honeycomb cell generatrix (a line whose motion generates a honeycomit
cell wall) is perpendicular to the face sheets, only line contact ensures proper bonding between the face
sheets and the honeycomb core. Corrosion or excess open-mode deformation (moving apart of two face



sheets because of bending) can cause the line-contact bonding to lose its integrity—a major drawback of
the honeycomb sandwich structure. For titanium alloys, the so-called superplastically-formed/diffusion-
bonding fabrication process could be used to form sandwich panels with a variety of core geometries and
achieve diffusion-bonded surface contact between the face sheets and sandwich core.

If the sandwich panel is curved, the mechanical or thermal bending in the direction of reducing the
panel curvature could induce tensile stress (calpesh-mode strey the sandwich core depth direction
because the two face sheets tend to separate from each other, causing potential debonding between tt
face sheets and sandwich core. For the solid curved beams (monolithic or laminated composites)
subjected to open-mode bending, the open-mode stress distribution in the curved beam depth direction is
arch-shaped; that is, zero values occur at the inner and outer boundaries and the maximum value occur:
inward of the middle surface (refs. 7 through 15). The location of the maximum open-mode stress point
moves toward the middle surface as the curved beam depth decreases (refs. 7, 8, 15). For a curve
(horse-shoe-shaped or semi-elliptic-shaped) sandwich beam subjected to open-mode mechanical bending
however, distribution of the open-mode stress along the core depth direction is almost linear, with the
value reaching a maximum at the inner bonding interface (between the sandwich core and face sheets)
and tapering down slightly toward the outer bonding interface (ref. 16).

If the open-mode bending is too severe, this unfavorable location of the maximum open-mode stress
point in the curve sandwich panel will be the debonding crack nucleation site for inducing the catastrophic
debonding failure of the panels. One of the past catastrophic failures of the curved sandwich panels
occurred in the honeycomb landing gear door panels of a certain rotary-wing aircraft. During the landing
approach when the landing gear doors were wide open, a strong gust of wind induced excess open-modk
bending, and caused a catastrophic debonding failure, resulting in the total loss of one of the landing gear
doors. Recently, the curved sandwich panels have been designed to reinforce the nozzle ramps of certail
nonconventional rocket engines. In such application, the curved sandwich panels will be subjected to
open-mode thermocryogenic bending because the convex side of the curved sandwich panels will be
exposed to higher temperatures, and the concave side to cryogenic temperatures.

Increasing use of curved sandwich panels as aerospace structure components makes it vital to
fully understand their thermostructural behavior and identify key factors affecting the open-mode
debonding failure.

This report concerns the finite-element, open-mode debonding analysis of curved honeycomb-core
sandwich panels subjected to thermocryogenic bending. The results of the analysis show how the open-
mode stress distributions and sandwich panel deformations vary with the panel curvature and boundary
condition. The information in this report could serve as guidelines in the effective design of failure-free
curved sandwich panels that must function under thermocryogenic environment.

DESCRIPTION OF PROBLEM

The following sections describe the geometry of the family of curved sandwich panels, boundary
conditions, and thermocryogenic loading condition used in the analysis.

Geometry

Figure 1 shows a cross-section of the curved honeycomb-core sandwich panel with cote depth
identical face-sheet thickneds , half-span curve lehdiimeasured along the center line), radius
of curvaturer, and the curvature angle (or half-span an@lePanels with different curvatures are



generated by simply changitgand keepindy, |, andt, constant. Dimension automatically changes
with 6 according tor = 57.3(/6) becausd is constant. Table 1 lists the dimensions of the analyzed
sandwich panels.

Table 1. Geometry of curved sandwich panels.

h =14in.

| =31in.

t, = 0.032in.

0 =90°( =19.74in.), 75°1(= 23.68 in.), 60°r(=29.60 in.), 45°1(= 39.47 in.),
30° ¢ =59.21 in.), 15°(=118.41in.), 5°r(= 355.23in.), 0°r(= oo, flat)

The linear dimensions in table @ éxcluded) are similar to those of the curved honeycomb-core
sandwich panels proposed for reinforcing the nozzle ramps of certain nonconventional rocket engines for
future space transportation systems. In the range of 862 8°, panel deformed shapes for additional
curvature angle® = 2.5°, 6.25°, 7.5°, 10°, and 12.5° also were examined to find the critical curvature
angled at which the panel deformed modal shape changes.

Boundary Conditions

The edges of the curved sandwich panels are either simply supported (fig. 2(a)) or clamped (fig. 2(b)).
The method of simply supporting a sandwich panel is slightly different from the conventional way of
simply supporting a solid panel. At the sandwich panel edges (fig. 2(a)), transverse rigid bars are attached
and pin-joined to the sandwich edges, with the bar midpoints pinned to fixed points lying in the middle
surface of the sandwich panel. This method of edge support allows (1) panel edges to rotate freely with
respect to the horizontal axes (i.e., edges of middle surface), (2) panel edge depth to remain straight aftel
deformation, and (3) maximum transverse shear deformation to take place at the panel edges. For the
clamped boundary condition (fig. 2(b)), the two face sheets and sandwich core at the panel edges
are clamped.

Thermocryogenic Loading

The curved sandwich panel is subjected to thermocryogenic loading. The convex side (upper surface)
of the sandwich panel is uniformly heated to temperalyye =280 °F, and the concave side (lower
surface) uniformly cooled to cryogenic temperatlife =~ =-320 °F. This temperature range is typical for
laboratory testing the structural integrity of curved sandwich panels designed to reinforce the nozzle
ramps of certain nonconventional rocket engines. Such thermocryogenic loading certainly induces
open-mode bending, and raises concern about potential open-mode debonding failure of the curved
sandwich panels.

FINITE-ELEMENT ANALYSIS

The following sections describe the finite-element modeling of the curved sandwich panels, and the
material properties used for the face sheets and honeycomb core elements.



Finite-Element Modeling

The open-mode linear elastic debonding analysis used the Structural Performance And Resizing
(SPAR) finite-element computer code (ref. 17). For simplicity, only a segment of each curved
honeycomb-core sandwich panel was considered. Thus, the problem became two dimensional. Because
of symmetry with respect to the y-axis (fig. 1), only a semi-span of the curved sandwich panel segment
was modeled. Each face sheet was modeled with one layer of isotropic quadrilateral combined membrane
and bending E43 elements, and the sandwich core with eight layers of anisotropic quadrilateral membrane
E41 elements.

To simulate the pinned rigid rod at the panel edge (fig.2(a)), each node at the edge of the semispan
model was pin-connected to the fixed supporting point lying in the middle surface using beam E22
element (for which the intrinsic stiffness matrix is given). The stiffness of the E22 elements was made
very large to simulate the rigid rods. Temperature distribution along the sandwich core depth was
assumed to be linear. Figure 3 shows a semi-span, finite-element model generated for curved sandwick
panel segment with curvature an@le 90°. Finite-element models for different panel curvatures were
generated from th@ = 90° model by simply changing the curvature afigéad the associated radius of
curvaturer without disturbing other dimensions. Thus, the total number of joint locations (JLOC) and of
finite elements remained unchanged. Table 2 lists the size of the finite-element model for any curvature
angle®.

Table 2. Size of finite-element model for any curvature afhgle

JLOC 2211
E41 elements 1600
E43 elements 400
E22 elements (simply supported case only) 10

Material Properties

The material properties of the face sheets and the honeycomb core used for the finite-element models
are of certain age-hardened steel, and are given, respectively, in tables 3 and 4.

Table 3. Material properties of face sheets (age-hardened steel).

70 °F 280 °F —-320 °F
E, Ib/in? 29.1x 10° 28.05% 10P 30.05x 10°
G, Ib/ir? 10.4x 10P 10.04x 1P 10.6x 10°

v 0.302 0.31 0.285

a, in/in-°F 9.17x 107 9.17x 107° 9.17x 10°%"

p, Ib/in3 0.287 0.287 0.287

*Actual data not available.



Table 4. Effective material properties of
honeycomb core (age-hardened steel).

E;; = 0.1x 10% Ib/in?

E,, = 0.1x 10% Ib/in?

Ess = 0.1x 10% Ib/in?

G,, = 0.75x 1P Ib/in?

G,3 = 0.1x 10° Ib/in?

0.4x 1 Ib/in?

o, =04, =0y =8.1x10°in/in-°F
0.432x 107 Ib/in®

®
«
I

o
=
3)

1

In table 4, the subscripts {1, 2, 3} denote the radial, tangential, and axial (longitudinal) directions.
Data for the effective Poisson’s ratios for the honeycomb core were not available at the time of analysis.
The effective Poisson’s ratios for the honeycomb core are usually negligibly small (on the ord&taf 10
1077; ref. 2); therefore, they are assumed to be zero in the analysis.

The finite-element analysis computes the effective radial tensile stggss for the honeycomb core.
This stress is then converted to the actual radial tensile siress  (defined as open-mode stress) induced i
the honeycomb core cell wall according to the following relationship:

A

_ c _
Or = Oett & = Tt - (1)
Cc

whereA, andh, are, respectively, the cross-sectional areas of the honeycomb cell and cell wall (normal
to the honeycomb cell generatrixy;and p,,. are, respectively, the weight densities of the honeycomb
core material and core structure.

RESULTS

This section presents the results of finite-element, open-mode analysis of curved honeycomb-core
sandwich panels subjected to thermocryogenic bending, including panel deformations, core depth
changes, open-mode stresses, and face-sheet stresses.

Panel Deformations

Figures 4 through 11 show the deformed shapes of the curved sandwich panels with different
curvatures supported under different boundary conditions. The undeformed shapes are superimposed ot
the deformed shapes to show the relative positions of both. In all plots, the panel displacements are
magnified for the sake of visualization. In the figures, values of radial displacégent  at the midspan of
the middle surface of each sandwich panel is indicated. The siyn of  is defined as positive for upward
(outward) displacement and negative for downward (inward) displacemeft=Rd&° only (fig. 9(a)), in



addition to the value of midspan radial displacem&nt (no longer maximum), the maximum radial
displacements at two outer-span points are shown.

For the simply supported panels with curvature angles varying ren®0° to0 =15° (figs. 4(a)

through 9(a)), the midspan regions of the sandwich panels move inwdgdly (= negative), and the outer
span regions bulge out. At= 45°, 30°, 15° (figs. 7(a) through 9(a)), the panel deforms into shallow

M shapes. For curvature angkes 5° andd = 0°, (figs. 10(a), 11(a)), the panel bows upward deforming

into arch shapes without cave-in regions. The causes of M-shaped and arch-shaped deformations will be
discussed later in the section, “Face Sheet Stresses.” For the simply supported curved panels, the cor
depth stretching\h (i.e., pulling apart of two face sheets) is maximum at the midspan, and gradually
tapers down in tangential direction, and becomes zero at the panel supported edges because of constrair

For the clamped panels, the midspan radjal is positige=aB0° (fig. 4(b)) and then becomes
negative as the curvature angle decreases (figs. 5(b) through 11(b)). At a curvature @ngl&°of
(fig. 10(b)), the midspan region appears cave-in because of the magnified displacement plot. When the
panel is flat,0 = 0°, (fig. 11(b)), the midspan downward displacement becomes infinitesimal. For the
clamped curved panels (figs. 4(b) through 10(b)), the core depth stretching appears almost uniform over
the entire span (except for the supported panel edges). As will be shown shortly, the core depth stretching
Ah becomes maximum at the midspan or at the outer spans depending on the value of curvature angle

Figure 12 shows radial displacemedts  at the midspan of the middle surface of the curved sandwich
panel plotted as functions of curvature angl®r the two different boundary conditions. The simply
supported case induced markedly larger magnitude of midspan displacépents (a maximum of 1,357
times larger ad = 0°) than the clamped case. For the simply supported case, the downward displacement
of the midspangd, = negative) is maximunbat 90°, decreases monotonically with decreasingrns
to upward displacemen®f = positive) at approximately 14°, and finally increases steeply tas
approaches zero (flat panel).

For the clamped case, the midspan displacedgnt is slightly updgard (= positive) at curvature
angle® = 90°, and turns downward{ = negative) at aro@nel 85°. The downward displacement
continues to increase with decreasthgeaching a peak at abdit=10°, and then decreases to a very
small negative value &t= 0°.

Core Depth Changes

Figure 13 shows the maximum sandwich core depth chayes, plotted as functions of the
curvature angl® for the two cases of boundary conditions. For the simply supported(&dse, ., IS
always at the midspan of the curved sandwich panels (flat panel excluded). For the clamped case,
however,(Ah),,.. is at the midspan only for the panels with low-curvature angles®4%%2. For the
high-curvature angles 90°6>> 45°, the location ofAh), ., shifts to the outer spans (near the edges) of
the panel.

The simply supported boundary condition induces higher valueAbj,, ., (a maximum of
22 percent higher & = 45°) than the clamped case. As the curvature @hdkcreases fror = 90°,
values of(Ah),,,.x increase slightly and reach their peak (indicated on the figures with downward arrows)
at 8 = 75° for both boundary conditions, and then gradually decrease to very small negative values
(contraction) a® = 0°. When the panel becomes flat< 0°), no curvature effects can induce core
stretching, and the sandwich core contracts slightly, because the cryogenic contraction of the sandwich



core depth overcomes the effect of its thermal expansion. Table 5 lists the numerical veigg, of
used in plotting figure 13.

Table 5. Maximum sandwich core depth chan@gs) ., for different curvature @ngles
6, deg 90 75 60 45 30 15 5 0
Simply

(Ah) Supportedo'08736 0.08949 0.08838 0.08198 0.06413 0.03497 0.00841 —-0.00028
max?

in.
Clamped 0.07203 0.07383 0.07267 0.06629 0.05320 0.03053 0.01042 —0.00028

“Located at outer span; all others are located at midspan.

Figure 14 shows the distribution of the sandwich core depth chahgg®sitive for stretching) for
the simply supported case in thé space, wherkis defined in figure 1. The distribution surface/f
forms a distorted dome shape, with the apex at the midsp@dus G5° panel. The peak value & is
indicated with a downward arrow. For any curved sandwich pAhes maximum at the panel midspan
and gradually approaches zero toward the panel edge. The curve for connecting the midspan values o
Ah (= (Ah),,,ax) for differentd is indicated in figure 14. This curve is identical to (Adn) .. curve for
the simply supported case shown in figure 136At 0° (flat panel), the tangential distribution Af
becomes flat with slightly negative values (contraction) over the entire span except for panel edges
reflecting the overbalanced cooling of sandwich core as explained earlier.

Figure 15 shows the distribution of sandwich core depth chaigesthel-8 space for the clamped
case. The distribution surface & for the clamped case is cascade shaped with the apex (peak value of
Ah = (Ah),,ax) at the outer span 6f= 75° panel as indicated with a downward arrow. For high-curvature
angles 90° B > 45°, the value ahh tapers up slightly (almost linearly) from its midspan minimum value
toward the outer span, reaching its peak before suddenly dropping to zero at the panel edges. For
low-curvature angles 45° & > 5°, Ah is maximum at the midspan and decreases infinitesimally and
practically linearly toward the outer span and then drops suddenly to zero at the panel edges because o
edge constraints. Th@h),,,,  curve shown in figure 13 for the clamped case is actually a composite
curve consisting of a segment of the curve at the outer span (curve with arrow sign attached) over the
curvature angle range 909> 45° whereAh = (Ah),,,,,, and a segment of the curve at the midspan over
the range 45° 8 > 5° whereAh = (Ah),,,, (fig. 15). When the panel is fld £ 0°),Ah becomes slightly
negative (contraction) and is practically constant over the entire panel span (except for the panel edges)
because of overbalanced cooling as mentioned earlier.

Open-Mode Stresses

Figures 16 through 21 show the tangential distributions of local maximum open-mode gtgkses
induced in the curved sandwich panels with different curvature ahigheswill be seen lateo,), s at
the inner bonding interface between the inner face sheet and the sandwich core.



For the simply supported case, the maximum open-mode gogks (0,) =, is always at the
midspan of the curved sandwich panel. The valués of, decrease monotonically (convex downward)

in the tangential direction from its midspan maximum va(ae$,_ , and down to zero at the panel edges.

For the clamped cases shown in the figures with dashed curves, the tangential distribigjgp of
remains almost constant over the span up to the panel edge(ahgre drops rapidly to zero because c
clamping. The maximum open-mode stresg) . is at the midspan of the panel of low-curvature
angle; 45° >0 >5°, and its location shifts to outer spans of the panel with high curvature angle
90° >0 > 45°.

Figure 22 shows the plots of maximum open-mode strggggs, ., as functions of the curvature
angled for the two cases of boundary conditions. For the simply supported @9e,,, is at the
midspan of the inner bonding interface. For the clamped case (simiain}g ., in figure 13), however,
(0) .4 IS @t the midspan of the inner bonding interface for the curvature rangeb465% or at the
outer spans of the inner bonding interface for the curvature angle ranged $035°. The simply
supported case induces higher value$m} than the clamped case, with a maximum of 32 percent
higher at® = 90°. The peak values 66,) .~ occuibat 75° for both boundary conditions. The shapes
of the (0,) .« Curves and the locations of peak values directly reflect characteristics (dfhifye,
curves shown in figure 13. Table 6 lists the numerical valu¢s 9f . used in plotting figure 22.

max

Table 6. Maximum open-mode stregg) . for different curvature aégles

0, deg 90 75 60 45 30 15 5 0

Simply
() maxe supported

Ib/in® " Clamped | 3,550 3,619 3544 3,220 2,574 1,489 530 0

4,434 4,533 4,480 4,134 3,330 1,940 611 O

“Located at outer span; all others are located at midspan.

Figure 23 shows the distribution of the local maximum open-mode sti@g9gs [-ehgbace for
the simply supported case. The distributiorf@f) , , like thathaffig. 14), also forms a distorted dome
shape, with its apex (peak value(af), ()., ) indicated with a downward arrow, at the midspan
of the® = 75° panel. For any curvature an@lehe values ofc,), reach their peg ), = (o,) ., at
the midspan, and gradually taper down to zero toward the panel edge. The curve for connecting the
midspan valuego,) . is indicated in the figure. This curve is identical téahe curve for the

simply supported case shown earlier in figure 228 AtC" (flat), (o,), is zero over the span.

Figure 24 shows the local maximum open-mode stre§sgs, plotted ¥ thpace for the
clamped case. The surface(of) distribution for the clamped case looks similar to a cascade, with its
apex (peak value fo,), €o,) ., ) atthe outer spa=f75° panel (indicated on figure with a down-
ward arrow). For any curvature an@lethe value of(o,), appears almost constant over the panel span,
and then suddenly drops to zero at the panel edge. When the panel &s=fl&), (o), is zero
everywhere. The segment of curve at the outer span (curve with vertical arrow sign attached) over the



curvature angle range 909> 45° wherg(o,), <0,)
the range 45° 8 > 5° where(o,), =0,)
shown earlier in figure 22.

max and the segment of curve at the midspan over

form the composite, ) curve for the clamped case

max max

Figures 25 and 26, respectively, show the radial distributions of open-modeostress  along the y-axis
(i.e., along the midspan core depth direction) for the simply supported and the clamped boundary
conditions. For both types of boundary conditions, the radial distributian of  for any curvature angle
6 (6 # 0°) is almost linear, and tapers down very little toward the outer bonding interface. For the flat
panel @ = 0°), 0, is zero everywhere in the core.

For the simply supported case (fig. 26), (&), is at the inner bonding interface (between the
inner face sheet and the sandwich core), and the curve indicated in the figure is identiced tp the
curve shown earlier in figure 22 for the simply supported case.

For the clamped case (fig. 26), the segmenfa) . curve lying in the regio® < 45° is the
midspan(a,), ., curve segment shown earlier in figure 22 for the clamped case.

Face-Sheet Stresses

Figures 27 through 34 show the tangential distributions of tangential stre%s&sg{ ,  }induced in the
concave (lower) and convex (upper) face sheets for different curvature @mgitebe simply supported
case. The plus (+) and minus (-) signs alongside d'@e {53 ,  }curves imply tension and compression,
respectively. The concave face sheet is under tensi'g)n (= positive) because of restrained cryogenic
contraction, and the convex face sheet (except for the panel edge regions, figs. 29 through 33) is undel
compression (tg = negative) because of restrained thermal expansion. For a given curvatlie angle
the magnitude oﬁ'e is always larger than thadrgpf because of panel curvature and the unequal thermo-
cryogenic loading condition. Adecreases frof = 90°, the difference between the magnitudeax'gf{ ,
cg} grows larger (figs. 27 through 33), and then becomes practically zérg af (fig. 34). Also, a$
decreasesag in the convex face sheet near the panel edges begins to grow from negative to positive
(figs. 29 through 33) because of the load transfer from the concave face sheet through the edge rigid rods
These panel edge tensile zones in the convex face sheet continue to grow tbgmoases smaller, and
finally extend to the entire panel sparbat 0° (fig. 34).

The tangential stresses of opposite signs induced in the two face sheets (figs. 27 through 33) generate
thermal moments [:c({3 eg h)2] that tend to bend the curved panels downward, thus appearing to be
caved in. For a given curvature anflethe cave-in thermal moments reach maximum intensity at the
midspan and gradually taper down toward the panel edges=AQ° (flat panel, fig. 34), the cave-in
thermal moments diminish because boﬁ'b{ 03, } have practically identical small positive values that
are constant over the entire panel span.

Figure 35 shows the midspan magnitudesc»)'éc {cg, } plotted as functions of curvatureddagle
the simply supported case. The stress magnitudee (03 — )2 of the cave-in thermal moments
[= (0'e —og /2] is also plotted. The value oblé eg )/2 increased atecreases fromd = 90°,
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reaching a maximum &= 15° where the M-shaped deformation is the most pronounced (fig.9(a)), and
then decreases rapidly toward zer® at 0°. At = 3°, cg changes sign from negative to positive and
then reaches a small positive value practically identical to the vahni@ of  (fig.@84ppsoached = 0°.

Figure 36 shows the causes of the shallow M-shaped deformation of a &/picEb°, (fig. 9(a))
simply supported curved panel. Because of the cryogenic contraction of the concave face sheet and the
thermal expansion of the convex face sheet, the simply supported panel edges are forced to rotate abot
the fixed support points, causing upward bowing of the panel. Simultaneously, the induced cave-in
thermal moments (maximum at the midspan) try to bend the panel downward, resulting in the M-shaped
deformation. At lower curvature angles (ef= 5°), the upward bowing effect begins to overshadow the
cave-in bending effect, causing the curved panel to deform into a shallow arch shape (fig. 10(a)). The
transition from M-shaped to arch-shaped deformation occurs in the neighborh®osd 76f for the
present study.

Figures 37 through 39 show the tangential distributions of tangential stre%se:s;{ ,  }induced in the
concave and convex face sheets for different curvature ghfgethe clamped case. The distributions of
{cg, cg}[or the cave-in thermal moments xjk G{; h/2] are almost constant over the panel span for
the larger curvature angles betw&en 90° and = 30° (fig. 37), and starts to taper down slightly toward
the panel edges at smaller curvature anglesl5° to6 = 5° (figs. 37 and 38). The differences in the
magnitudes of {7'9 ,Gg } are almost inconspicuous for 90° toB = 30° panels, and start to grow larger
with decreasing curvature andle At 6 = 0° (fig. 39), the magnitudes of botkv'e{ 0,3 } are constant
everywhere over the panel span (i.e., constant cave-in thermal moments, fig. 11(b)).

Figure 40 shows the midspan magnitudescnlg {cg, } plotted as functions of curvatureddagle
the clamped case. The stress magnittaxﬂ,e (03 — )/2 for the cave-in thermal monux'%nt [sg( h/2}is )
also plotted. The value obt, 6y )2 increase® aecreases fro = 90°, reaching a maximum at
0 = 5° where the most pronounced cave-in deformation occurs, (fig.10(b)), and then decreases slightly as
0 approache8 = 0°.

Figure 41 shows the causes of cave-in deformation of a typical clamped@arig) (Because of the
clamped edges without rotations, upward bowing effect is constrained, and the cave-in thermal moments
(almost constant over the entire panel span) bend the panel downward into the cave-in shape.

DISCUSSION

The near-linear radial distribution of ~ across the core depth is typical for the curved honeycomb-
core sandwich panels, and was observed also in horseshoe- and elliptic-curved honeycomb-core sandwicl
bars subjected to open-mode mechanical bending (ref. 15). For a classical solid curved beam on the othe
hand, the radial distribution af,  at any tangential cross-section is arch shaped, with zero values at the
inner and the outer boundaries, and the local maximum value at a point slightly inward of the middle
surface of the curved beam (refs. 7 through 15).

For the present cases of curved sandwich pafetsOC) under thermocryogenic loading, the inner
bonding interface at the midspan or at the outer spans is, therefore, the potential debonding failure
initiation region. The deformed shapes of curved sandwich panels presented (figs. 4 through 11) show that
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the midspan and outer spans of the curved sandwich panels are the critical high deflection points. Thus, in
using the curved sandwich panels as reinforcing structures operating under thermocryogenic environment,
those critical high deflection points must be properly constrained (in addition to the panel edges) to
preserve the original shapes. Because the clamped boundary condition induces smaller panel deflection:
and lower levels of open-mode stress field, by supporting the curved panel edges as close as the theoretice
clamped condition, concerns of excess panel deflections and of the open-mode debonding failure could
be minimized.

CONCLUSIONS

Finite-element open-mode debonding analysis was performed on a family of curved honeycomb-core
sandwich panels subjected to thermocryogenic bending. The effects of panel curvature and boundary
condition on the open-mode stress distributions and the deformation fields were studied in detail. The key
findings may be summarized in the following:

1. The peak panel deflection occurs at the midspan of the curved sandwich panel under both simply
supported and clamped boundary conditions (exception: simply supported curved panel with
curvature angl® = 15°, for which the peak panel deflections occur at outer spans).

2. The radial distribution of open-mode stress in the core of a curved sandwich panel is practically
linear, with local maximum and minimum values located, respectively, at the inner and outer
bonding interfaces. The minimum value is only slightly lower than the maximum value.

3. For a simply supported curved sandwich panel, the maximum open-mode stress point (or
maximum core stretching point—the potential debonding failure initiation point) is always at the
midspan of the inner bonding interface.

4. For the clamped case, the maximum open-mode stress point (or maximum core stretching point)
is at the midspan of the inner bonding interface for low-curvature panels only, and shifts to the
outer spans of the inner bonding interface for high-curvature panels.

5. The magnitude of the maximum open-mode stress (or maximum sandwich core stretching)
increases with increasing panel curvature, reaching maximum at curvature® angk®, and
then decreases slightly as the panel turns to a quarter €ircl@Q®) under both simply supported
and clamped boundary conditions.

6. Ingeneral, clamping a curved sandwich panel induces smaller panel deflections, lower open-mode
stresses, and less core depth stretching than simply supporting the panel.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, February 3, 1999
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Figure 1. Curved honeycomb-core sandwich panel subjected to heating and cryogenic cooling on
opposite sides.
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Figure 2. Two types of edge support conditions for the sandwich panel.
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Figure 12. Plots of radial displaceme{s (positive upward) at midspan of curved sandwich panel as
functions of curvature angls T, = 280 °F; T, =-320 °F.

22



12x1072

Midspan y/t(Ah)max
. T, =280 °F _| or
10 Simply supported u SN gl (Ah)
¢ o~ /max
m NS
2>
8 — _ o N\\ ,/’
‘____i____ T,=-320 °F .
T - Lel d o Ze
- ampe
(Ah)max* 6
in. X
4k -~ Midspan | Outer span ¢ Peak value
2
0
-1 ] ] ] ] ] ] ] ] ]
0 10 20 30 40 50 60 70 80 90
6, deg 990057
Figure 13. Plots of honeycomb core maximum depth chaidg®s, ., (at midspan or outer span, positive
for stretching) of curved sandwich panel as functions of curvature @ngj|e= 280 °F;T, =-320 °F.
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Figure 14. Distributions of honeycomb core depth chakigéositive for stretching) in the® space
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Figure 15. Distributions of honeycomb core depth chakigépositive for stretching) in the® space
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Figure 16. Tangential distributions of local maximum open-mode sf®9g in curved honeycomb
core,; T, =280 °FT, =-320 °B;=90°.
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Figure 17. Tangential distributions of local maximum open-mode sf®9g in curved honeycomb
core; T, =280 °FT, =-320°B;=75°".
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Figure 18. Tangential distributions of local maximum open-mode sf&9g in curved honeycomb
core; T, =280 °FT, =-320 °B;=60°.
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Figure 19. Tangential distributions of local maximum open-mode sf®9g in curved honeycomb
core; T, =280 °FT, =-320 °B;=45°.
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Figure 20. Tangential distributions of local maximum open-mode s{g9g in curved honeycomb

core; T, =280 °FT, =-320 °B;,=30°.
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Figure 21. Tangential distributions of local maximum open-mode ste§s in curved honeycomb core;

T, =280 °FT, =-320°F=15°".
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Figure 23. Distribution of local maximum open-mode strgsg) inl-thepace; T, = 280 °F;

T, =-320 °F; simply supported.
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Figure 24. Distribution of local maximum open-mode strésg) inl-thepace; T, = 280 °F,
T, =-320 °F; clamped.
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Figure 25. Radial distribution of open-mode stress along y-axis as a function of curvatur@ angle
T, =280 °F;T; =-320 °F; simply supported.
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Figure 26. Radial distribution of open-mode stress along y-axis as a function of curvaturg angle
T, =280 °F,T, =-320 °F; clamped.
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Figure 27. Tangential distributions of tangential streqseg 0'9} in the face shgets; = 280 °F,
T, =-320 °F9 = 90°; simply supported.
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Figure 28. Tangential distributions of tangential streqseg 0'9}
T, =-320 °F9 = 75°; simply supported.
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Figure 29. Tangential distributions of tangential streiscelé cle}
T, =-=320 °F9 = 60°; simply supported.
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Figure 30. Tangential distributions of tangential stres{smgs Gle}
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Figure 31. Tangential distributions of tangential streqseg 0'9} in the face shgets;

T, =-320 °F9 = 30°; simply supported.
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Figure 32. Tangential distributions of tangential stredses 0'9} in the face shgets;

T, =-320 °F9 = 15°; simply supported.
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Figure 33. Tangential distributions of tangential stres{segs Gle} in the face shgets; = 280 °F;
T, =-320 °F9 = 5°; simply supported.
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Figure 34. Tangential distributions of tangential stregses o in the face shgets; = 280 °F,

T, =-320 °F9 = 0°; simply supported.
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Figure 35. Face sheets tangential strefsgsog} at panel midspan as functions of curvatye angle

T, =280 °F;T; =-320 °F; simply supported.
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Figure 36. M-shaped deformation of the simply supported curved sandwich panel caused by the
combined effect of the cave-in thermal moments induced in the panel and the bowing rotations at the
panel edges], =280°HF; =-32086F 15°.
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Figure 37. Tangential distributions of tangential stres{segs Gle} in the face shgets; = 280 °F;
T, =-320 °F9 = 90°~15°; clamped.
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Figure 38. Tangential distributions of tangential stres{segs Gle} in the face shgets; = 280 °F;

T, =-320 °FP = 5°; clamped.
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Figure 39. Tangential distributions of tangential stre$$fgsog} in the face shgets280 °F;

T, =-320 °F® = 0°; clamped.
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Figure 40. Face sheets tangential stre@sqgsoe} at panel midspan as functions of curvatye angle
T, =280 °F, T, =-320 °F; clamped.
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Figure 41. Cave-in deformation of the clamped curved sandwich panel caused by the cave-in thermal
moments induced in the pandl, =280TF;, =-32M%5°.
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